Potencial de los hongos anamorfos de Guatemala para la producción de α-amilasas utilizando como sustrato cascarilla de arroz
Resumen
Palabras clave
Citas
Aliyah, A., Almsyah, G., Ramadhani, R., & Hermansyah, H. (2017). Production of α-Amylase and β-Glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia, 136, 418-423. doi: 10.1016/j.egypro.2017.10.269
Castilho, L. R., Polato, C. M. S., Baruque, E. A., Sant’Anna, G. L., & Freire, D. M. G. (2000). Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochemical Engineering Journal, 4(3), 239-247. doi: 10.1016/S1369-703X(99)00052-2
de Castro, A. M., de Andréa, T. V., Castilho, L., & Freire, D. M. G. (2010). Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch. Applied biochemistry and biotechnology, 162(6), 1612-1625.
Castro, A. M., Carvalho, D. F., Freire, D. M. G., & Castilho, L. R. (2010). Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Research, 576872, 1-9. doi: 10.4061/2010/576872
Cowan, D. A., & Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49(4), 326-346. doi: 10.1016/ j.enzmictec.2011.06.023
Ertan, F., Yagar, H., & Balkan, B. (2007). Optimization of α-amylase immobilization in calcium alginate beads. Preparative Biochemistry and Biotechnology, 37(3), 195-204. doi: 10.1080/10826060701386679.
He, L., Mao, Y., Zhang, L., Wang, H., Alias, S. A., Gao, B., & Wei, D. (2017). Functional expression of a novel α -amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. Biotechnology, 17(22), 1-13. doi: 10.1186/s12896-017-0343-8
Kumar, D., Muthukumar, M., & Garg, N. (2012). Kinetics of fungal extracellular D -amylase from Fusarium solani immobilized in calcium alginate beads. Journal of Environmental Biology, 33(6), 1021-1025.
Lagunes, M., López, A., Ramos, A., Trigos, A., Salinas, A., & Espinoza, C. (2015). Actividad antibacteriana de extractos metanol:cloroformo de hongos fitopatógenos. Revista Mexicana de Fitopatología, 33(1), 87-94.
Liese, A., & Hilterhaus, L. (2013) Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249. doi: 10.1039/C3CS35511J
Lonsane, B.K., & Ramesh, M.V. (1990). Production of Bacterial Thermostable α-Amylase by Solid-State Fermentation: A Potential Tool for Achieving Economy in Enzyme Production and Starch Hydrolysis. Advances in Applied Microbiology, 35, 1-56. doi: 10.1016/S0065-2164(08)70242-9
Melnichuk, N., Braia, M. J., Anselmi, P. A., Meini, M. R., & Romanini, D. (2020). Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillusoryzae by solid-state fermentation. Waste Management, 106, 155-161. doi: 10.1016/j.wasman.2020.03.025
Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. doi: 10.1016/j.jclepro.2013.10.051
Nguyen, T., Kim, K., Han, S., Cho, H., Kim, J., Park, S., ... Sim, S. (2010). Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresource Technology, 101(19), 7432-7438. doi:10.1016/j.biortech.2010.04.053.
Pandey, A., Selvakumar, P., Soccol C. R., & Nigam P. (1999). Solid state fermentation for production of industrial enzymes. Current Science, 77, 149-162.
Pandey, A., Soccol, C., & Mitchell, D. (2000). New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry, 35(10), 1153-1169. doi: 10.1016/S0032-9592(00)00152-7.
Sadh, P., Duhan, S., & Duhan, J. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15. doi: 10.1186/s40643-017-0187-z.
Santos, D. T., Sarrouh, B. F., Rivaldi, J. D., Converti, A., & Silva, S. S. (2008). Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. Journal of Food Engineering, 86(4), 542-548. doi: 10.1016/ j.jfoodeng.2007.11.004
Sethi, B. K., Jana, A., Nanda, P. K., & Dasmohapatra, P. K. (2016). Production of α -Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization. Frontiers in Plant Science, 7(639), 1-13. doi: 10.3389/fpls.2016.00639
Singh, S., Singh, S., Bali, V., Sharma, L., & Mangla, J. (2014). Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Research International, 48, 1-9. doi: 10.1155/2014/215748
Wadhwa, M., & Bakshi, M. (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value added products. Bangkok, Tailandia: RAP publication.
Yepes, S., Montoya, L., & Orozco, F. (2008). Valorización de residuos agroindustriales -frutas- en Medellín y el Sur del Valle del Aburrá, Colombia. Revista de la Facultad Nacional de Agronomía Medellín, 61(1), 4422-4431.
Yusuf, M. (2017). Agro-industrial wastes materials and their recycled value-added applications: Revision. En L. Martínez, O. Kharissova & B. Kharisov (Eds). Handbook of Ecomaterials (pp. 1-9). Cham: Springer.
Zaferanloo, B., Bhattacharjee, S., Ghorbani, M., Mahon, P., & Palombo, E. (2014). Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiology, 14(55), 1-12. doi: 10.1186/1471-2180-14-55.
Refbacks
- No hay Refbacks actualmente.